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Humanizing Macroeconomics: Beyond Rationality

Abstract*

Macroeconomic models have long incorporated the hypothesis of rational expectations. This premise is

pivotal in ensuring consistency and facilitating equilibrium; however, it raises numerous inquiries. As Dou-

glass C. North puts it, we must ascertain ”What Do We Mean by Rationality?” Is the implication that agents

possess omniscience and consistently maximize utility? Research by psychologists such as Kahneman in-

dicates otherwise. Additionally, individuals are susceptible to a ”contagion-effect,” as brilliantly introduced

by Kirman (1993), where they are inclined to conform to the most widely recognized opinion. In this con-

text, I will present a simple DSGE model with rational expectations and elucidate three of its limitations.

Subsequently, I will introduce and simulate a Behavioural Model, specifically a variation of De Grauwe

(2008), to address these deficiencies.

1 The DSGE Framework

Following the rational expectations revolution, wherein Lucas (1976) expanded on the

concept introduced by Muth (1961), the Real Business Cycle (RBC) model, distinguished by its

micro-foundations and rational expectations, emerged. This model’s equations are derived from

the optimizing behaviour of economic agents. Furthermore, both consumers and firms possess

rational expectations, implying that they have perfect knowledge of the model’s structure and the

distributions of economic shocks. Given that all agents are rational and share the same information

set, the model focuses on a representative agent. The initial model, however, assumed perfect price

flexibility, the absence of monetary factors, and solely a Total Factor Productivity (TFP) shock.

This led to the development of Dynamic Stochastic General Equilibrium (DSGE) models, which

incorporate sticky prices, thus legitimizing the role of a central bank, and consider multiple shocks

to disturb the economy. These models have now achieved widespread application in both policy-

making and academia (see Smets and Wouters, 2003, 2005; Christoffel et al., 2008; Smets et al.,
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2010). A simplified model can be articulated using three fundamental equations, delineating ag-

gregate demand, the supply curve, and the Central Bank’s policy rule. The aggregate demand is

derived by maximizing the preferences of the representative household, incorporating habit forma-

tion as discussed in Abel et al. (1990) to ensure that the impulse response function (IRF) of output

conforms to the empirically observed hump-shaped patterns. The household thus maximises the

following:

Et−1

∞

∑
i=0

β
i−t (u(Xt+i −hXt+i−1)− v(Nt+i))

Where Et−1 is the expectation operator, β is the discount factor, Xt and Nt respectively represent

output consumed and hours worked at time t, while h > 0 allows for habit formation. Furthermore,

households are subject to a series of budget constraints of the form:

PtXt +QtBt = Bt−1 +WtNt

where Pt is the price of goods, Wt the nominal hourly wage, Bt the quantity of riskless bonds

acquired at time t and maturing in t +1. These bonds offer a unit payoff at maturity and are priced

at Qt . By resolving the optimization problem and log-linearizing, the demand curve is obtained:

xt = a1Etxt+1 +(1−a1)xt−1 +a2 (rt −Etπt+1)+ εt (1)

The supply equation, known as the New Keynesian Philips curve, embodies both forward-looking

and backward-looking inflation components. Within classical literature, Calvo pricing is exten-

sively employed to model price stickiness: within this framework, each firm has the probability

1−θ to reset its prices at time t, and must continue with unchanged prices at probability θ . Here,

however, to more accurately reflect the observed inflation inertia, firms unable to reoptimize their

prices align them with past inflation, as elucidated by Christiano et al. (2001). Firms then select

P∗
t to maximize the following objective function:

Et−1

∞

∑
i=0

(βθ)i
λt+i (P∗

t Πti −MCt+i)X j,t+i

where Πti =

 πt ×πt+1 ×· · ·×πt+i−1 for i ≥ 1

1 i = 0
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subject to:

X j,t+i =

(
P∗

t
Pt+i

)−ϕ

Xt+i

where λt is the marginal utility out of income for the households, ϕ is the elasticity of substitution

between goods, MCt the marginal cost, and X j,t+i is output in period t + i for a firm that resets its

price at time t. The solution to this problem yields:

πt = b1Etπt+1 +(1−b1)πt−1 +b2xt +ηt (2)

Finally, the model is closed using the Taylor Rule, that represent the reaction of the Central Bank

to changes in output gap xt and inflation πt .

rt = c1 (πt −π
∗
t )+ c2xt + c3rt−1 +ut (3)

In this context, π∗
t represents the inflation target set by the Central Bank, and as dictated by the

Taylor Principle, c1 > 1. Furthermore, c2 > 0 and c3 > 0 is the smoothing parameter. The terms

εt ,ηt ,ut in equations 1, 2, 3 are construed as shocks, which are characterized by disturbance terms

following a normal distribution.

While the model is capable of reproducing stylized facts and can emulate the movements of the

business cycle, it nevertheless exhibits certain limitations. Firstly, it fails to replicate the higher

moments of the business cycle. Empirical observations of the output gap reject the normality hy-

pothesis for U.S. data (De Grauwe, 2012), showing excess kurtosis. A similar conclusion applies

to EU data, as shown in figure 1, though at a less significant level. Conversely, DSGE models

tend to generate output gap movements that follow a normal distribution. This issue is critical,

as disregarding the presence of fat tails diminishes the model’s capability to represent and pre-

dict extreme events. Taleb (2007) addresses this problem through a philosophical lens. Secondly,

within DSGE models, economic booms and busts originate solely from exogenous shocks. For in-

stance, it is common in literature to introduce various types of shocks to model crises or recessions.

Moreover, the transmission of these shocks is predictable and remains unaffected by the prevailing

state of the economy. In simple terms, the same shock consistently yields identical outcomes, irre-

spective of market sentiment. Thirdly, these models assume the existence of an omniscient agent
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Figure 1: Frequency distribution of EU Output Gap, 1970Q1:2017Q4. Excess kurtosis=3.2, Jarque-Bera=4.8 (p-

value=0.07)

Source: produced by the author. The data set is the one used by Fagan et al. (2001), discontinued in 2018. Output is

detrended using an HP filter (λ = 1600) to estimate the output gap.

endowed with rational expectations, who operates optimally and with an infinite temporal hori-

zon for optimization. This assumption has been repudiated by substantial experimental evidence:

agents are frequently influenced by their context or emotional state, as documented by Kahneman

and Thaler (2006); they make decisions that do not maximize utility, as shown by Kahneman and

Tversky (1979); and their choices are often time-inconsistent, as demonstrated by Thaler (1981).

Consequently, there is a pressing need to augment this framework to adequately address these in-

consistencies.
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2 Adaptive Learning Model

2.1 The model

De Grauwe (2008) revisits the concept of ”animal spirits” as originally introduced by

Keynes. These phenomena are characterized by fluctuating levels of optimism and pessimism that

have self-fulfilling properties, arising from the fact that individuals possess only partial knowledge

of the information set, thereby exhibiting heterogeneous behaviours. Given their limited capacity

to fully comprehend the complexities of the world, agents resort to simple heuristics, subsequently

adopting those that yield superior outcomes. This ”trial and error” approach is known as ”adaptive

learning”, for reasons that will become clear later.

The equations of this model are akin to those established for the DSGE baseline model:

xt = a1Ẽtxt+1 +(1−a1)xt−1 +a2
(
rt − Ẽtπt+1

)
+ εt (4)

πt = b1Ẽtπt+1 +(1−b1)πt−1 +b2xt +ηt (5)

rt = c1 (πt −π
∗
t )+ c2xt + c3rt−1 +ut (6)

where the tilde over the expectations operator signifies that expectations for future output and

inflation are not formed rationally. Pertaining to the former, it is postulated that certain agents

maintain an optimistic outlook, while others hold a pessimistic view, and a third group extrapolates

from the most recent observation. The first group consistently skews output predictions upwards,

and the second consistently delivers negative forecasts; these are identified as the fundamentalists.

The methodologies are delineated as follows:

optimistic ( fo): Ẽ fo
t xt+1 = gt (7)

pessimistic ( fp): Ẽ fp
t xt+1 =−gt (8)

extrapolative: Ẽe
t xt+1 = xt−1 (9)

where gt = k+δvar(xt), k > 0, δ > 0

thus the forecasts of output gap of fundamentalists tend to diverge more when the uncertainty about

output increases. The collective market forecast for output is then derived as a weighted mean of
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these three clusters:

Ẽtxt+1 = α fo,t Ẽ
fo

t xt+1 +α fp,t Ẽ
fp

t xt+1 +αe,txt−1 (10)

where α fo,t +α fp,t +αe,t = 1

At each period’s conclusion, agents assess the forecast accuracy of the various heuristics by calcu-

lating the mean squared forecasting errors (MSFEs) of the rules employed as follows:

U fo,t =−
∞

∑
k=1

ωk

(
xt−k − Ẽ fo

t−k−1xt−k

)2
(11)

U fp,t =−
∞

∑
k=1

ωk

(
xt−k − Ẽ fp

t−k−1xt−k

)2
(12)

Ue,t =−
∞

∑
k=1

ωk
(
xt−k − Ẽe

t−k−1xt−k
)2 (13)

where ωk are geometrically diminishing weights, reflecting agents’ tendencies to place dimin-

ished emphasis on past errors, a behaviour commonly known as recency bias. Subsequently, the

agents must evaluate these utilities: assuming pure rationality, they would opt for the rule deliv-

ering the highest utility. Nevertheless, empirical research, as thoroughly reviewed by Della Vigna

(2007), indicates that individuals are influenced by external factors in their decision-making pro-

cesses. This implies that the utilities of the three options comprise both deterministic and stochastic

components. De Grauwe (2008) models the probability of selecting different rules following the

approach of Brock and Hommes (1997): ,

α fo,t =
eγU fo,t

eγU fo,t + eγU fp,t + eγUe,t
(14)

α fp,t =
eγU fp,t

eγU fo,t + eγU fp,t + eγUe,t
(15)

αe,t =
eγUe,t

eγU fo,t + eγU fp,t + eγUe,t
(16)

where the parameter γ indicates the degree of ”willingness to learn from past performances”: at

γ = 0, probabilities are distributed uniformly, indicating indifference towards rule efficacy; at γ →

∞, agents invariably prefer the rule with superior performance.

The agents employ an analogous set of rules to forecast inflation. The fundamentalists possess
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confidence that the central bank will effectively regulate inflation, and consequently, they utilize

its target for their forecasts. Conversely, agents who perceive the central bank’s announcements as

lacking credibility resort to employing the extrapolative rule. Hence,

Ẽ f un
t πt+1 = π

∗
t (17)

Ẽext
t πt+1 = πt−1 (18)

where Ẽtπt+1 = β f un,tπ
∗
t +βext,tπt−1

and π
∗
t = 0

the performance and utility of these rules are evaluated by agents through a mechanism akin to that

used for predicting output:

β f un,t =
eγU f un,t

eγU f un,t + eγUext,t
(19)

βext,t =
eγUext,t

eγU f un,t + eγUext,t
(20)

where U f un,t and Uext,t represent the forecast performances of the fundamentalist and extrapolative

rules, respectively, as determined in eq.11 and 13.

2.2 Simulation of the model

The model is calibrated in accordance with the methodologies outlined in De Grauwe

(2008), whereby temporal units are represented in months rather than quarters. Within the simu-

lation, the economy is continuously subjected to demand and supply shocks, which are i.i.d. and

exhibit no autocorrelation, possessing standard deviations of 0.5%. The findings of the exercise

are illustrated in figures 2 and 3. Panel 1 of figure 2 illustrates the temporal pattern of output,

characterized by cyclical fluctuations interspersed with periods of relatively low volatility, akin to

those depicted in figure 1. The lower panel of the same figure elucidates the origins of these move-

ments, attributed to the proportion of optimists and pessimists within the market, an embodiment

of the concept of animal spirits. The model thus facilitates the ”generation of endogenous waves of

optimism and pessimism”. These cycles are sustained by a self-fulfilling mechanism: as random

shocks perturb the economic landscape, one of the three decision rules yields a superior payoff,
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Figure 2: Output Gap in the Behavioural Model

Source: produced by the author, based on De Grauwe (2012)

hypothetically the pessimistic one. Consequently, this draws agents who previously adhered to

the optimistic or extrapolative rule. This ”herding effect” augments the proportion of pessimistic

agents, thereby diminishing aggregate demand and suppressing output, a phenomenon observable

after periods 50 and 150 in the chart. When a subsequent shock renders the optimistic rule more

attractive, it likewise attracts adherents, thereby initiating a trend reversal and leading to an eco-

nomic boom.

Inflation exhibits distinctive behaviour. When the percentage of forecasters adhering to the cen-

tral bank’s inflation target (ECB followers in the charts) stabilizes around 50%, the inflation rate

remains within 1% of the target. However, an increase in the proportion of extrapolators leads to

greater fluctuations in inflation, thereby rendering the central bank’s inflation targeting mechanism

considerably fragile. This vulnerability is further intensified by its intrinsic unpredictability, as

fluctuations may occur due to unforeseen shocks, which consequently render reliance on historical

inflation data more favourable compared to confidence in the bank’s target.

The model successfully addresses the three limitations inherent in its rational expectations ana-
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Figure 3: Inflation in the Behavioural Model

Source: produced by the author, based on De Grauwe (2012)

logue. Firstly, as illustrated in figure 4, the simulated distribution of the output gap exhibits fat

tails, thereby diminishing the likelihood of underestimating extreme events, a notable shortcoming

of DSGE models. Furthermore, the deviation from normality in the distribution is not attributed to

the shocks, which are normally distributed, but rather arises from the endogenous dynamics of op-

timism and pessimism. Secondly, within this model, business cycles are endogenously determined

as a result of transitions between various rules. When beliefs remain stable or fluctuate within a

defined range, as observed during periods 160 to 200 in figure 2, the output gap oscillates slightly.

Conversely, self-fulfilling waves of optimism and pessimism can precipitate economic booms and

busts in alignment with the aforementioned process. Furthermore, it is noteworthy that the impact

and persistence of shocks are significantly contingent upon the prevailing state of the market, as

depicted in figure 5. The figure illustrates the impulse responses of inflation to an abrupt reduc-

tion in the interest rate rt . In scenarios where skepticism towards the inflation target prevails, the

interest rate shock exerts a significant influence on inflation. Conversely, in contexts where there

is sufficient confidence in the central bank, a reduction in the interest rate exerts only a marginal
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impact on inflation, ”a result akin to the stabilization bonus conferred by a fully credible central

bank.”

Figure 4: Frequency distribution of Output Gap in the Behavioural Model. Excess kurtosis=5.2, Jarque-Bera=489.5

(p-value=0.001)

Source: produced by the author, based on De Grauwe (2012)

Figure 5: IRFs of inflation to a negative interest rate shock

Source: produced by the author, based on De Grauwe (2012)

Finally, the model addresses behavioural biases within an economic framework charac-
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terized by agents who possess an incomplete understanding of their environment and exhibit in-

efficiencies in information processing. The reliance on simple heuristics facilitates the emergence

of heterogeneity, thereby abandoning the restrictive and unrealistic premise of the representative

agent. Although some posit that deviating from rationality permits infinite possibilities in the for-

mulation of ”irrational” predictions, the model demonstrates the feasibility of replicating economic

dynamics when agents’ habits diverge from pure rationality, without necessitating engagement

with the ”dark realm of irrationality”.
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A. Appendix

† The entirety of the subsequent code is derived from De Grauwe (2012), pages 66-67.

The original code has undergone substantial modifications and expansions to accommodate a wider

array of rules than those present in the original version. The Impulse Response Functions (IRF)

are calculated in accordance with the methodology delineated in the same book, page 69.

1 Model

gam = 1;

pstar = 0;

beta = 1;

delta = 0.4;

a1 = 0.5;

a2 = -0.2;

b1 = 0.5;

b2 = 0.05;

c1 = 1.5;

c2 = 0.5;

c3 = 0.5;

A = [1 -b2;-a2*c1 1-a2*c2];

B = [b1 0;-a2 a1];

C = [1-b1 0;0 1-a1];

T = 2000;

sigma1 = 0.5;

sigma2 = 0.5;

sigma3 = 0.5;

omega =0.5;

rhoout =0.0;

rhoinf =0.0;

rhotayl =0.0;

epfs=pstar;

p = zeros(T,1);

x = zeros(T,1);

plagt = zeros(T,1);

xlagt = zeros(T,1);

r = zeros(T,1);

epf = zeros(T,1);

epc = zeros(T,1);

ep = zeros(T,1);

ex = zeros(T,1);

ERp = zeros(T,1);

FRp = zeros(T,1);

alfapt = zeros(T,1);

†not included in the word count
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exfunoptt = zeros(T,1);

exfunpest = zeros(T,1);

ERx = zeros(T,1);

FORx = zeros(T,1);

FPRx = zeros(T,1);

alfaxfunoptt = zeros(T,1);

alfaxfunpest = zeros(T,1);

alfaxextt = zeros(T,1);

anspirits = zeros(T,1);

ECBfollowers = zeros(T,1);

epsilont = zeros(T,1);

etat = zeros(T,1);

ut = zeros(T,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

alfap =0.5;

alfaxfunopt =1/3;

alfaxfunpes =1/3;

alfaxext =1/3;

for t=2:T

%definition of shocks at time t

epsilont(t) = rhoout*epsilont(t-1) + sigma1*randn;

etat(t)= rhoinf*etat(t-1) + sigma2*randn;

epsilon = epsilont(t);

eta = etat(t);

shocks = [eta;a2*0+ epsilon ];

%inflation rules

epes=p(t-1);

eps=alfap*epes+(1- alfap)*epfs;

%output rules

divt = (1-delta)*beta + delta*var(x(max(2,t-12):t)); %(1-delta)*beta=2k in the essay

gt = divt /2;

exext=x(t-1);

exfunopt=gt;

exfunpes=-gt;

exfunoptt(t)=exfunopt;

exfunpest(t)=exfunpes;

exs=alfaxext*exext + alfaxfunopt*exfunopt + alfaxfunpes*exfunpes;

%state of the model at time t

forecast = [eps;exs];

plag=p(t-1);

xlag=x(t-1);

rlag=r(t-1);

lag = [plag;xlag];

smooth = [0;a2*c3];

D = B*forecast + C*lag + smooth*rlag + shocks;

X = A\D;

p(t)= X(1,1);

x(t)= X(2,1);

r(t)= c1*p(t) + c2*x(t) + c3*r(t-1) +0;
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plagt(t)=p(t-1);

xlagt(t)=x(t-1);

%updating rules performance and probabilities

ERp(t) = omega*ERp(t-1) - (1-omega)*(epes -p(t))^2;

FRp(t) = omega*FRp(t-1) - (1-omega)*(epfs -p(t))^2;

ERx(t) = omega*ERx(t-1) - (1-omega)*(exext -x(t))^2;

FORx(t) = omega*FORx(t-1) - (1-omega)*(exfunopt -x(t))^2;

FPRx(t) = omega*FPRx(t-1) - (1-omega)*(exfunpes -x(t))^2;

alfap = exp(gam * ERp(t)) / (exp(gam * ERp(t)) + exp(gam * FRp(t)));

alfaxext = exp(gam * ERx(t)) / (exp(gam * ERx(t)) + exp(gam * FORx(t)) + exp(gam * FPRx(t)));

alfaxfunopt = exp(gam * FORx(t)) / (exp(gam * ERx(t)) + exp(gam * FORx(t)) + exp(gam * FPRx(t)));

alfaxfunpes = exp(gam * FPRx(t)) / (exp(gam * ERx(t)) + exp(gam * FORx(t)) + exp(gam * FPRx(t)));

alfapt(t) = alfap;

alfaxextt(t) = alfaxext;

alfaxfunoptt(t) = alfaxfunopt;

alfaxfunpest(t) = alfaxfunpes;

if exext >0

anspirits(t)=alfaxext + alfaxfunopt;

end

if exext <=0

anspirits(t)=alfaxfunopt;

end

ECBfollowers(t)=1-alfap;

end

%kurtosis & jbtest

Kurt = kurtosis(x);

[jb ,pvalue ,jbstat] = jbtest(x ,0.05);

disp(['4th Moment (Kurtosis): ', num2str(Kurt)]);

disp('Jarque -Bera Test Results:');

disp(['JB Statistic: ', num2str(jbstat)]);

disp(['p-value: ', num2str(pvalue)]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% charts %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure;

histogram(x, 40)

title('Histogram Output Gap');

xlabel('Output Gap (%)');

ylabel('Frequency ');

figure;

subplot (2,1,1)

plot(x(301:600))

title('Output Gap - Behavioural Model ')

xlabel('time')

ylabel('output gap (%)')

xlim ([0 300])

subplot (2,1,2)

plot(anspirits (301:600))

title('Animal Spirits ')

xlabel('time')

ylabel('% of agents with positive forecast ')
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xlim ([0 300])

figure;

subplot (2,1,1)

plot(p(301:600))

title('Inflation - Behavioural Model ')

xlabel('time')

ylabel('inflation (%)')

subplot (2,1,2)

plot(ECBfollowers (301:600))

title('ECB Followers ')

xlabel('time')

ylabel('% of agents who trust the ECB')

xlim ([0 300])

2 IRF

gam = 1;

pstar = 0;

beta = 1;

delta = 0.4;

a1 = 0.5;

a2 = -0.2;

b1 = 0.5;

b2 = 0.05;

c1 = 1.5;

c2 = 0.5;

c3 = 0.5;

A = [1 -b2;-a2*c1 1-a2*c2];

B = [b1 0;-a2 a1];

C = [1-b1 0;0 1-a1];

T = 1000;

sigma1 = 0.5;

sigma2 = 0.5;

sigma3 = 0.5;

omega =0.5;

rhoout =0.0;

rhoinf =0.0;

rhotayl =0.0;

epfs=pstar;

epsilont = zeros(T,1);

etat = zeros(T,1);

ut = zeros(T,1);

Baseline_p = zeros(T,1);

Baseline_x = zeros(T,1);

Baseline_plagt = zeros(T,1);

Baseline_xlagt = zeros(T,1);

Baseline_r = zeros(T,1);

Baseline_epf = zeros(T,1);

Baseline_epc = zeros(T,1);

Baseline_ep = zeros(T,1);

Baseline_ex = zeros(T,1);

Baseline_ERp = zeros(T,1);

Baseline_FRp = zeros(T,1);
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Baseline_alfapt = zeros(T,1);

Baseline_exfunoptt = zeros(T,1);

Baseline_exfunpest = zeros(T,1);

Baseline_ERx = zeros(T,1);

Baseline_FORx = zeros(T,1);

Baseline_FPRx = zeros(T,1);

Baseline_alfaxfunoptt = zeros(T,1);

Baseline_alfaxfunpest = zeros(T,1);

Baseline_alfaxextt = zeros(T,1);

Baseline_anspirits = zeros(T,1);

Baseline_ECBfollowers = zeros(T,1);

Perturbed_p = zeros(T,1);

Perturbed_x = zeros(T,1);

Perturbed_plagt = zeros(T,1);

Perturbed_xlagt = zeros(T,1);

Perturbed_r = zeros(T,1);

Perturbed_epf = zeros(T,1);

Perturbed_epc = zeros(T,1);

Perturbed_ep = zeros(T,1);

Perturbed_ex = zeros(T,1);

Perturbed_ERp = zeros(T,1);

Perturbed_FRp = zeros(T,1);

Perturbed_alfapt = zeros(T,1);

Perturbed_exfunoptt = zeros(T,1);

Perturbed_exfunpest = zeros(T,1);

Perturbed_ERx = zeros(T,1);

Perturbed_FORx = zeros(T,1);

Perturbed_FPRx = zeros(T,1);

Perturbed_alfaxfunoptt = zeros(T,1);

Perturbed_alfaxfunpest = zeros(T,1);

Perturbed_alfaxextt = zeros(T,1);

Perturbed_anspirits = zeros(T,1);

Perturbed_ECBfollowers = zeros(T,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

u=0.0;

control =0;

Baseline_alfap =0.5;

Baseline_alfaxfunopt =1/3;

Baseline_alfaxfunpes =1/3;

Baseline_alfaxext =1/3;

Perturbed_alfap =0.5;

Perturbed_alfaxfunopt =1/3;

Perturbed_alfaxfunpes =1/3;

Perturbed_alfaxext =1/3;

for t=2:T

%definition of shocks at time t

epsilont(t) = rhoout*epsilont(t-1) + sigma1*randn;

etat(t)= rhoinf*etat(t-1) + sigma2*randn;
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l = find(Baseline_ECBfollowers , 1, 'last');

%change second argument to get left panel

if t>100 && Baseline_ECBfollowers(l) >= 0.55 && control == 0

ut(t) = -1;

u = ut(t);

control = 1;

bar = l;

else

ut(t) = 0.6*ut(t-1);

u = ut(t);

end

epsilon = epsilont(t);

eta = etat(t);

Baseline_shocks = [eta;epsilon ];

Perturbed_shocks = [eta;a2*u+epsilon ];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% baseline model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%inflation rules

Baseline_epes=Baseline_p(t-1);

Baseline_eps=Baseline_alfap*Baseline_epes +(1- Baseline_alfap)*epfs;

%output rules

Baseline_divt = (1-delta)*beta+delta*var(Baseline_x(max(2,t-12):t));

Baseline_gt = Baseline_divt /2;

Baseline_exext=Baseline_x(t-1);

Baseline_exfunopt=Baseline_gt;

Baseline_exfunpes=-Baseline_gt;

Baseline_exfunoptt(t)=Baseline_exfunopt;

Baseline_exfunpest(t)=Baseline_exfunpes;

Baseline_exs=Baseline_alfaxext*Baseline_exext+Baseline_alfaxfunopt*Baseline_exfunopt+Baseline_alfaxfunpes*

Baseline_exfunpes;

%state of the model at time t

Baseline_forecast = [Baseline_eps;Baseline_exs ];

Baseline_plag=Baseline_p(t-1);

Baseline_xlag=Baseline_x(t-1);

Baseline_rlag=Baseline_r(t-1);

Baseline_lag = [Baseline_plag;Baseline_xlag ];

Baseline_smooth = [0;a2*c3];

Baseline_D = B*Baseline_forecast + C*Baseline_lag + Baseline_smooth*Baseline_rlag + Baseline_shocks;

Baseline_X = A\Baseline_D;

Baseline_p(t)= Baseline_X (1,1);

Baseline_x(t)= Baseline_X (2,1);

Baseline_r(t)= c1*Baseline_p(t)+c2*Baseline_x(t)+c3*Baseline_r(t-1)+u;

Baseline_plagt(t)=Baseline_p(t-1);

Baseline_xlagt(t)=Baseline_x(t-1);

%updating rules performance and probabilities

Baseline_ERp(t) = omega*Baseline_ERp(t-1) - (1-omega)*( Baseline_epes -Baseline_p(t))^2;

Baseline_FRp(t) = omega*Baseline_FRp(t-1) - (1-omega)*(epfs -Baseline_p(t))^2;

Baseline_ERx(t) = omega*Baseline_ERx(t-1) - (1-omega)*( Baseline_exext -Baseline_x(t))^2;

Baseline_FORx(t) = omega*Baseline_FORx(t-1) - (1-omega)*( Baseline_exfunopt -Baseline_x(t))^2;

Baseline_FPRx(t) = omega*Baseline_FPRx(t-1) - (1-omega)*( Baseline_exfunpes -Baseline_x(t))^2;
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Baseline_alfap = exp(gam*Baseline_ERp(t))/(exp(gam * Baseline_ERp(t)) + exp(gam * Baseline_FRp(t)));

Baseline_alfaxext = exp(gam*Baseline_ERx(t))/(exp(gam * Baseline_ERx(t)) + exp(gam * Baseline_FORx(t)) + exp(gam *

Baseline_FPRx(t)));

Baseline_alfaxfunopt = exp(gam*Baseline_FORx(t))/(exp(gam * Baseline_ERx(t)) + exp(gam * Baseline_FORx(t)) + exp(gam *

Baseline_FPRx(t)));

Baseline_alfaxfunpes = exp(gam*Baseline_FPRx(t))/(exp(gam * Baseline_ERx(t)) + exp(gam * Baseline_FORx(t)) + exp(gam *

Baseline_FPRx(t)));

Baseline_alfapt(t) = Baseline_alfap;

Baseline_alfaxextt(t) = Baseline_alfaxext;

Baseline_alfaxfunoptt(t) = Baseline_alfaxfunopt;

Baseline_alfaxfunpest(t) = Baseline_alfaxfunpes;

if Baseline_exext >0

Baseline_anspirits(t)=Baseline_alfaxext + Baseline_alfaxfunopt;

end

if Baseline_exext <=0

Baseline_anspirits(t)=Baseline_alfaxfunopt;

end

Baseline_ECBfollowers(t)=1- Baseline_alfap;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% perturbed model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%inflation rules

Perturbed_epes=Perturbed_p(t-1);

Perturbed_eps=Perturbed_alfap*Perturbed_epes +(1- Perturbed_alfap)*epfs;

%output rules

Perturbed_divt = (1-delta)*beta+delta*var(Perturbed_x(max(2,t-12):t));

Perturbed_gt = Perturbed_divt /2;

Perturbed_exext=Perturbed_x(t-1);

Perturbed_exfunopt=Perturbed_gt;

Perturbed_exfunpes=-Perturbed_gt;

Perturbed_exfunoptt(t)=Perturbed_exfunopt;

Perturbed_exfunpest(t)=Perturbed_exfunpes;

Perturbed_exs=Perturbed_alfaxext*Perturbed_exext+Perturbed_alfaxfunopt*Perturbed_exfunopt+Perturbed_alfaxfunpes*

Perturbed_exfunpes;

%state of the model at time t

Perturbed_forecast = [Perturbed_eps;Perturbed_exs ];

Perturbed_plag=Perturbed_p(t-1);

Perturbed_xlag=Perturbed_x(t-1);

Perturbed_rlag=Perturbed_r(t-1);

Perturbed_lag = [Perturbed_plag;Perturbed_xlag ];

Perturbed_smooth = [0;a2*c3];

Perturbed_D = B*Perturbed_forecast + C*Perturbed_lag + Perturbed_smooth*Perturbed_rlag + Perturbed_shocks;

Perturbed_X = A\Perturbed_D;

Perturbed_p(t)= Perturbed_X (1,1);

Perturbed_x(t)= Perturbed_X (2,1);

Perturbed_r(t)= c1*Perturbed_p(t)+c2*Perturbed_x(t)+c3*Perturbed_r(t-1)+u;

Perturbed_plagt(t)=Perturbed_p(t-1);

Perturbed_xlagt(t)=Perturbed_x(t-1);

%updating rules performance and probabilities

Perturbed_ERp(t) = omega*Perturbed_ERp(t-1) - (1-omega)*( Perturbed_epes -Perturbed_p(t))^2;
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Perturbed_FRp(t) = omega*Perturbed_FRp(t-1) - (1-omega)*(epfs -Perturbed_p(t))^2;

Perturbed_ERx(t) = omega*Perturbed_ERx(t-1) - (1-omega)*( Perturbed_exext -Perturbed_x(t))^2;

Perturbed_FORx(t) = omega*Perturbed_FORx(t-1) - (1-omega)*( Perturbed_exfunopt -Perturbed_x(t))^2;

Perturbed_FPRx(t) = omega*Perturbed_FPRx(t-1) - (1-omega)*( Perturbed_exfunpes -Perturbed_x(t))^2;

Perturbed_alfap = exp(gam*Perturbed_ERp(t))/(exp(gam * Perturbed_ERp(t)) + exp(gam * Perturbed_FRp(t)));

Perturbed_alfaxext = exp(gam*Perturbed_ERx(t))/(exp(gam * Perturbed_ERx(t)) + exp(gam * Perturbed_FORx(t)) + exp(gam *

Perturbed_FPRx(t)));

Perturbed_alfaxfunopt = exp(gam*Perturbed_FORx(t))/(exp(gam * Perturbed_ERx(t)) + exp(gam * Perturbed_FORx(t)) + exp(

gam * Perturbed_FPRx(t)));

Perturbed_alfaxfunpes = exp(gam*Perturbed_FPRx(t))/(exp(gam * Perturbed_ERx(t)) + exp(gam * Perturbed_FORx(t)) + exp(

gam * Perturbed_FPRx(t)));

Perturbed_alfapt(t) = Perturbed_alfap;

Perturbed_alfaxextt(t) = Perturbed_alfaxext;

Perturbed_alfaxfunoptt(t) = Perturbed_alfaxfunopt;

Perturbed_alfaxfunpest(t) = Perturbed_alfaxfunpes;

if Perturbed_exext >0

Perturbed_anspirits(t)=Perturbed_alfaxext + Perturbed_alfaxfunopt;

end

if Perturbed_exext <=0

Perturbed_anspirits(t)=Perturbed_alfaxfunopt;

end

Perturbed_ECBfollowers(t)=1- Perturbed_alfap;

end

p = Perturbed_p - Baseline_p;

x = Perturbed_x - Baseline_x;

%the script must be run twice: first for the left panel (assigning p1=p;bar1=bar), then for the right panel.

% figure('Name ','IRF inflation to interest rate shock ');

% sgtitle('IRF inflation to interest rate shock ')

% subplot (2,2,1)

% plot(p1)

% title('Skepticism - IRF ')

% ylabel('level ')

% xline(bar1 , 'r')

% xlim([bar1 -50 bar1 +50])

% ylim ([-.05 .1])

% xticks ([])

% grid on;

% subplot (2,2,3)

% plot(Baseline_ECBfollowers1)

% title('ECB Followers ')

% xlabel('time ')

% ylabel('% of agents who trust the ECB ')

% xline(bar1 , 'r')

% xlim([bar1 -50 bar1 +50])

% xticks ([])

% grid on;

% subplot (2,2,2)

% plot(p)

% title('Confidence - IRF ')

% xline(bar , 'r')

% xlim([bar -50 bar +50])

% ylim ([-.05 .1])

% xticks ([])

% grid on;
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% subplot (2,2,4)

% plot(Baseline_ECBfollowers)

% title('ECB Followers ')

% xlabel('time ')

% xline(bar , 'r')

% xlim([bar -50 bar +50])

% xticks ([])

% grid on;

ix


